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We examine a microscopically inhomogeneous medium consisting of a homogeneous non- 
linear viscoplastic matrix and a random set, of rigid ellipsoidal inclusions of var- 
ious sizes. A variant of the effective field method is used to calculate the macro- 
scopic theological constants of the medium. 

Optimization of a number of chemical technology processes for suspensions [i] requires 
prediction of the effective rheological properties of suspensions on the basis of carrier 
phase properties and the geometric structure of the filler. For monofractionated filler, 
this problem can be solved by various methods [1-4], including themost general: the multipar- 
ticle effective field method [3, 4]. Evidently the earliest method to account for a polyfrac- 
tionated filler state is the principle of multiplication of Farnas [5], used to predict vari- 
ous macroscopic properties of suspensions and composites [6, 7] with infinitely large differ- 
ences in the size of the filler fractions. The application of this principle to the case of 
inclusion fractions of commensurate size can lead to underestimation of the effective viscosity 
of Newtonian suspensions [7]. A second method of accounting for a polyfractionated filler state 
is based on either an estimate using semi-empirical models [8] with the maximum filler con- 
tent ca for the given grain size distribution, or on the construction of asymptotic effective 
viscosity in terms of the solid phase concentration c when c/c~ + 1 and c + 0 [2]. Substan- 
tial differences in the effective viscosity q* for constant c/c~ with change in the grain 
size distribution Of the filler have been noted [9]. Most of the numerous theoretical meth- 
ods (see reviews in [1, 2, I0]) are single-particle and do not in principle account for the 
influence of differences in inclusion size on the effective viscosity. An exception is the 
multiparticle effective field method [3, 4], on whose bases we propose an approximate method 
for computing the effective rheological properties of a suspension with a polyfractionated 
filler. 

i. Effective Field Method. We consider an unbounded, microscopically inhomogeneous 
medium. Initially we will assume that the carrier phase equation relating the stress tensor 
o and the strain rate E is linear: 

~= L0s, (i) 

where by using the viscosity tensor L 0 of rank four, it is possible to describe the mechanisms 
of bulk viscosity and anisotropy, 

Let the matrix v 0 with characteristic function V 0 and tensor L 0 contain the random set 

X = (V k, Xk, a k, m k) of rigid ellipsoids with characteristic functions Vk centers xk forming 

a Poisson point field, with semiaxes a~(ai~a2~o 3 A~ ~ ), with the set of Euler angles mk, and ten- 

sors L 0 + L I (L I = ~). We assume that all random quantities are statistically uniform, are 

ergodic fields, and that their expectation values are equal to their average over the compon- 
ent volume Xa: 

< (.) > ~ = ~ l  ~(.)V~(x)dx, <(.)) =$~(.)W(x)dx, 7~------mesv~, 
= Uv~, W =  ~ V ~ ( ~  = O , l  . . . .  ). 

We define <()[&> as the conditional average over the ensemble field X assuming that in- 

clusion v I is located at point x I. We will assume that the hydrodynamics of the components is 
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described by the equations of creep flow, and that the inclusions interact only hydrodynamic- 
ally: Brownian movement is not taken into account. 

We assign the composite Structure with the help of ~(vmIv~ .... , v~) -- the conditional dens- 
ity distribution of the m-th inclusion in region v m for fixed inclusions in regions v~, ..., 

v n. Here ~(v~lv~ .. . . .  v . ) , - + ~ ( v ~ )  if Ix i -Xm[ + = (i = i, ..., n) and ;~(Um[O 1 . . . . .  O n ) : 0  if 

x m lies within some correlation well consisting of the union of the regions v~uj(/-~-I ..... n) 

with characteristic functions V~. 
3 

An estimate of the effective viscosity tensor L* in the relation (analogous to (i)) 
<o> = L*<E> can be obtained using the effective field method [3, 4]: 

L* = L0 ~ ~ n~(Y-~)~j < R~ > ~, (2)  
~,#~1 

where n i is the number concentration of inclusions of component i, and <(.)>~ is the average 

over the orientation of inclusions of the j-th component. The tensor Rj = P-~j is determined 

from the solution to the hydrodynamic problem of an isolated inclusion. In turn, P~=--fU 

(x--g)Vi(9)d9=---LoS~, x6v] �9 Here sJ 0 is the Eshelby tensor, which is independent of the size 

(but not the form) of ellipsoid vj. This tensor is well-known in isotropic [I0] and trans- 
versally isotropic [Ii] media. U is the second derivative of Green's tensor [2, 3]. The ten- 
sor (Y-X)ij describes the concentration of the strain-rate field at the inclusions vj caused 
by neighboring inclusions: 

< ~,> i =  < R~ >,,71 ~ (Y-1) i j  < R j >  o~ < 8 > , 
/= I  

FiJ ~-= ~)iJ (I  .... < R i > ~ f < S (x  i .... z.f) Z j i  > e) (~ (uJlXJ; x i )  dxj) + 

= - ( . -  1 + ~ j )  ," R~ > ~0.i' { ( S ( x ~ - - - x A z ~  > . ,~(vj lx~;  x 3 - -  

- -  ( S~ (x~ - -  x j) ~ ,,, ~1  V (xj; x~) dx:  - -  < R~ > o, < P (v ~ ) > ~ ~z:, 

S(x i - -  xj) ~ (vivj) -~ Sf U (x .... .q) Vi (x) Vj (~) dxdg, 

S~ (x i - -  xj) --= (~)-~ ,( U (x - -  xj) V~ (x) dx, V (xj; x~) = V (x~) --V (x~). 

( 3 )  

The matrix Z = (Zji)(j, i = I .... , N) accounts for the binary interaction of inclusions v i 

and vj, and has an inverse Z -l with elements 

(Z-1)~j =, I 6 i j - -  (1 - ~J) R~S (x~ ..... xj). ( 4 )  

For  d e f i n i t e n e s s  in  (4)  i ,  j t a k e  on o n l y  two v a l u e s :  i ,  j = 1, 2. The m a t r i x  Z can be con-  
s t r u c t e d  by the method of successive approximations, taking the first two iterations into ac- 
count : 

Zi j  = 1,Sis - !  (1 - -  8~j) R~S (x~ .... xj). ( 5 )  

Using (5), the expression for Yij in (3) simplifies to 

r~J : :  ~iJ ] -i- (iSiJ - -  1) < R~ > ~ J'{ < S (x~ .... xj)  > ,~, i R j  "~ ~,~ < S (x, - -  ( 6 )  

- - X j )  > o~p(VjIXj; X i ) - -  < S i ( x i - - x i )  > r V(xj;  xl) dx j - -<  Ri > o, ( P ( ~ ~  > co1~J. 

For equiprobably oriented inclusions the tensors (S(xi--xi))~. <Rj>~ and Jij~---(Ri>~<S(xi 
--xj)>~<Rj>~<S(x~--x7)>~ are isotropic [3]: 

Ji.~ = (3J] i ,  2J~ i ) ~ 3J] j  N1 + 2J~ i ',V2, NI : - -  ~,:j~,,z/3, 

N ~ -  (6itfijz + 6~z6j~- 26ij6ht/3)./2. 

The components  J i j  a r e  g i v e n  in  [3 ] .  

2. Approx ima t ion  Methods .  A n a l y s i s  o f  (5)  and (6)  shows t h a t ,  i n d e p e n d e n t l y  o f  t h e  p r e -  
c i s i o n  of the solution to the problem with binary inclusion interaction, with the assumption 

q~ (vjlxj; Xl) ::: njV (xj; x~) (7)  
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the values of the integrals in (5) and (6) are directly proportional to the inclusion concen- 
tration c. This is the principle limitation of the two-particle effective field method. It 
is possible to make the method more accurate by accounting for a greater number of interact- 
ing inclusions, but then the difficulty of assigning the conditional density distributions 
~(vj{~; xx ..... x~) arises. We note that at present, ~(vj}x;; x! ..... xT0 is known only for n = i and 

spherical inclusions of uniform size [12]. An estimate of the nonlinear effects of the de- 
pendence on c of the integral terms in (5) and (6) is possible only by using an approximate 
approach based on identification of the coefficients-moduli from certain model experiments. 

We shall dwell on one of the possible approximation approaches. If we consider the case 
of a single-component filler, then 

i * : : : L o - i - ( 1 - - < R ) ~ < P ) ~ a i  ~jij~(v~lx~; x i ) d x ~ ) - - l ( R ) ~ n ~ ,  (8 )  

yil _~_ c-1 S Jis~ (vSIxs; xi) dxs= c -I (I - -  < R > ,oni (L* ---Lo) -1%.  < R ) ~ < P > o ni). ( 9 )  

For  d e n s i t y  d i s t r i b u t i o n  ( 7 ) ,  t h e  j i j  i n  (9 )  a r e  c o n s t a n t .  In  p a r t i c u l a r ,  f o r  r i g i d  s p h e r i c a l  
inclusions of uniform size in an incompressible matrix [3], we have 

~ * = ~ 0  1H- c 1 _  13__~c-:I j~  15 5 
' " ~ -  1--6' <R>~n~::~oC, ~R>o~<p>~n~c, (10) 

where  j i j  = ( 3 J i j l ,  2 J i j 2 ) .  We n o t e  t h a t  t h e  e x a c t  e v a l u a t i o n  o f  j i J 2  = 1 .0 0 4 ,  o b t a i n e d  f o r  

i n f i n i t e s i m a l  c [ 1 3 ] ,  which  i s  in  a g r e e m e n t  w i t h  t h e  p r o p o s e d  e f f e c t i v e  f i e l d  method ,  may be 
used for moderate values of the concentration c as well. The estimate of J2 in (i0) differs 
from the exact value by 6%. Let us examine the experimental data on the relative change in 
viscosity (q*/q0) of a suspension with spherical, rigid inclusions [7] (see Fig. I). Because 
of the well-known hydrodynamic analogy of elastic problems, this correspondsto the relative 
change in shear modulus for a composite with rigid inclusions in an incompressible matrix. 
Substituting the experimental data for q*/q0 into the right part of (9), we rewrite it in co- 

l 0 
)-ll }~C (see Fig. 2) From Fig. 2 it is clear that for a mono- ordinates J~= \c '--~(~]*/qo -- I ~- 

fractionated filler, the experimental value for je agrees satisfactorily with the calculated 

value jij 2 = 1.004 only up to a filler volume concentration of c = 0.4. Thus c = 0.4 limits 
the region of applicability of the two-particle effective field method of approximation. As 
a consequence of multiple-particle interactions of the inclusions, jij 2 decreases for c > 

0.4. We take this into account with the piecewise linear relation jiji(c) = jijif(c), f(c) = 

min(l, ~l - ~2 c), which relation corresponds to a three-particle approximation. For doubly- 

fractionated filler, it can be shown that within the limits of the multiparticle effective 
field method only the dependence of the integral terms of jij on the relative size of the in- 
clusion pair ai/a j affects the value of the effective modulus (12). We can conclude from Fig. 
2 that there is an increase in parallel displacement of the direct-line portions of the J1J 2 
dependence for decreasing ai/a I. 

Thus we take jiji(c) = J2 min (i, ~l - ~2 c + ~(aj/ai)'sign (i - aj/ai)), where ~(i) = 

0. By minimizing the error we find ~i = 1.57, ~2 = 1.47, ~ = 1.25(1 - aj/ai). According to 

experimental data [15] for a suspension with doubly-fractionated filler, the magnitude of the 
parallel displacement depends not only on the relative size of the fractions ai/a~, but also 

on their relative concentration, with ~ = 0 for c=/c~ = 0 or c~/c= = 0 and maximum parallel 

displacement ~ being achieved for c=/(c~ + c=) = 0.25-0.5. Thus we can consider that approxi- 

mately ~ = 1.25{1 - (aa/a~)min[4c=(c ~ + c2) -z, i, 2c~(c~ + c=)-~]}. These values for e~, ~=, 

and ~ allow us to compute curves of the relative change in the viscosity of a suspension with 
a bimodal distribution of spherical inclusions (see Fig. i), which is in satisfactory agree- 
ment with experiment. For polyfractionated filler it is necessary in (3) and (6) to use val- 

ues of j~3= interpolated from the doubly-fractionated filler values. 

3. Non-Newtonian Properties. We consider a Newtonian suspension based on a viscoplas- 
tic matrix whose mechanical properties are described by the dissipation function 

�9 �9 , (11)  D k ] / ~  ~ ~ (I2) (~i~6~)/2 + a e ~ .  
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Fig. i. Experimental data and curves calculated using the effective 
field method for the relative change in Newtonian viscosity of a 
suspension (cz/c ~ 0.25): (i) a2/a I = i; (2) 0.477; (3) 0.318; (4) 
0.138. 

Fig. 2. Experimental data and computed curves [see Fig. i and [14] 
(filled points)], transformed to J= ~ c coordinates. 

For definiteness we will examine a variant of the power-law fluid D(I' 2) ~ q0(l'2) (n-l)/2, 

where I~ - sii~ij is the second invariant of the strain rate deviator ~iJ = 8i:--~hk8~:/3 ; n is 

the parameter of nonlinearity; q0 is the linear viscosity; k is the plastic limit; a is a 

h a r d e n i n g  p a r a m e t e r ,  and e~:-~-~is(t)dt. 

To o b t a i n  c o n c r e t e  f i n a l  r e s u l t s  we assume h o m o g e n e i t y  o f  t h e  a c c u m u l a t e d  p l a s t i c  
s t r a i n  and t h e  s e c o n d  i n v a r i a n t  o f  t h e  s t r a i n  r a t e  t e n s o r  8ij(x)eq(x)-~<eqg~j>o, x6vo in  t h e  
m a t r i x  m a t e r i a l .  Wi th  t h e s e  a s s u m p t i o n s ,  t h e  p r o b l e m  o f  e v a l u a t i n g  t h e  e f f e c t i v e  non -Newton -  
i a n  p r o p e r t i e s  i s  l i n e a r i z e d .  Then as  in  [ 4 ] ,  i t  can  be  shown t h a t  f o r  an i s o t r o p i c ,  incom-  
p r e s s i b l e  m a t r i x  and i n c l u s i o n s  w i t h  e q u i p r o b a b l e  o r i e n t a t i o n s ,  t h e  e f f e c t i v e  r h e o l o g i c a l  
p r o p e r t i e s  o f  t h e  s u s p e n s i o n  a r e  d e s c r i b e d  by a d i s s i p a t i o n  f u n c t i o n  o f  t h e  fo rm (11)  w i t h  
parameters 

k* = k -V(1 - -  c) A (c) , a* = a A  (c), 

~]* = ~]of2(e)('~+1)/z(1 - -  e)(l-~)/2( ( 9~: ) < 9i: ) )r ( 12 )  

and a load function <o~j><o~j> = k* with a deviatoric tensor of the active stresses <o~j>~ 

<oij>- 6ij <Okk>/3 - q*<cij> - a*<eij>. It is evident from (12) that for a Newtonian suspen- 

sion with n = i, k = a = 0, the function f2(c) denotes the relative change of the Newtonian 

viscosity D*/q0, which depends only on the geometry of the inclusions and which may be eval- 
uated using (8). 

NOTATION 

oij, sij, eij are the stress, strain rate and accumulated plastic strain tensors, res- 
pectively; X = (Vk, Xk, ak, m k) is the set of inclusions v k with characteristic functions Vk, 
centers Xk, semi-axes a k and aggregate Euler angles mk; U is the second derivative of the 
Green tensor of the Lame problem for homogeneous unbounded media; ~ (VmlXm; Xk) is the condi- 
tional density distribution of the inclusions; and n i is their number concentration. 

i. 
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SOME PROPERTIES OF A PRECURSOR FILM 

D. I. Vandyshev and S. G. Skakun UDC 532.696.1 

The optical, rheological, and topological properties of a precursor film, which is 
created by a drop lying on a surface, were studied by means of ellipsometry. The 
investigated liquid is glycerin; the investigated subst~ates were type K8 and KUI 
glass. The results are in goodqualitative agreement with DLFO theory. 

Heterogeneous dispersive media are used in many industrial processes, which creates 
heightened interest in the wetting and spreading phenomena, which play a defining role in 
such systems. It is known that an interphase liquid-vapor surface can form near the contact 
of adrop with the base. If wetting is incomplete, the contact angle is finite at equilibri- 
um; if wetting is complete, the contact angle is negligibly small [~i]. It has been observed 
[1-3] that a submicron thick film forms on a solid substrate for any type of wetting near the 
interphase contact line. This film, which is called the precursor film, starts at the bound- 
ary between the phases, where its thickness is at a maximum, and slowly thins away from the 
boundary. In the case of complete spreading, this film has the shape of a pancake, which 
contains all the initial volume of the liquid. In the case of incomplete wetting, that is, 
when some equilibrium contact angle e is established in the system, this film also takes on 
a more complex equilibruim shape, which forms a transition region between the drop and the sub- 
strate. The shape and properties of this transition region are totally determined by the bal- 
ance of forces which act on the interphase boundary and, consequently, are the most important 
characteristics of the liquid-solid body-vapor system. 

The method of ellipsometry was used to study the optical, rheological, and topological 
properties of the precursor film, which arises in the case of incomplete wetting. Glycerin 
was chosen as the liquid to be studied. The substrates in the study were plane parallel plates 
of optical glass of type K8 and KUI. K8 glass is a single-component borosilicate glass, which 
contains additives of large cations and as a result has a large porosity in its structure. KUI 
glass is a simple quartz silicate glass with no additional inclusions or developed porosity. 
From studies on glass surfaces [4], it is known that the surface of any silicate glass under 
normal conditions is covered with a layer of adsorbed water with inclusions of a depolymeriz- 
ing silicon oxide grid. This "gel" has a chemical composition of the type SiOx(OH)y, where 
x + 2 and y + 0 with depth. We determined the effective values of these coating thicknesses 
for the glasses we used. The thickness was 50 ~ for K8 glass, and 20 ~ for KUI glass, which 
is in good agreement with other investigations [5], which give values of 55 and 20 ~, respec- 
tively. The difference in the thicknesses is explained by the different glass porosities and 
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